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Abstract
The non-local terms previously disregarded in the Landau free energy expansion
of a melt of polydisperse heteropolymers are shown to dramatically change the
appearance of the phase diagram of a heteropolymer liquid.

1. Introduction

One of the most intriguing phenomena observed in heteropolymer liquids is the formation
in these systems of thermodynamically stable mesophases where the densities of monomeric
units periodically change in space [1]. Such mesophases are conveniently described using
the main approaches of the weak crystallization theory [2]. It was Leibler who pioneered this
idea [3], but, like the authors of many subsequent publications (see reviews [4–6] and references
therein), he considered only monodisperse block copolymers. However, most commercial
synthetic copolymers are polydisperse, i.e. they consist of macromolecules differing in length,
chemical composition and sequence distribution. Later it was shown [7, 8] that the traditional
Landau theory describing the phase behaviour of such polydisperse systems needed to be
substantially modified. Namely, the set of the ordinary regular terms of the free energy
expansion must be complemented by the so-called ‘non-local’ terms [9–13]. The incorporation
of these terms stems from the need to take into account the ‘quenched’ disorder in the chemical
structure of the macromolecules of a polydisperse heteropolymer. The derivation of such
terms suggests averaging of the free energy of a system over this structural disorder. To this
purpose, recourse can be made to the replica trick, widely used in the statistical physics of
disordered systems [14, 15]. The authors of all works published so far invoking the Landau
theory to describe the thermodynamic behaviour of polydisperse heteropolymer systems (see,
for instance, [9–13, 16–23]) retained only the fourth-order non-local term in the free energy
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expansion. In the present letter it will be shown that the neglect in these articles of some non-
local terms of sixth order is responsible for the erroneous results reported. The problem is that
their contribution is of the same order of magnitude as the contribution of the terms traditionally
retained in the Landau free energy expansion of polydisperse heteropolymer liquids.

The vertex functions corresponding to the non-local terms are largely controlled by the
wavevector of the mesophase under consideration. That is why the minimization of the free
energy must be carried out not only with respect to the amplitude of the order parameter
but also with respect to its wavevector. Once the latter has been performed, the amplitude
expansion of the Landau free energy is obtained. Some of the fourth-order terms of this
expansion originate from the sixth-order non-local terms of the initial expansion of the Landau
free energy functional. All such terms are taken into consideration in the present letter, and
this is shown to considerably change the phase diagram.

The key feature peculiar to polydisperse heteropolymers is the presence on their phase
diagram of two-phase regions [18, 22, 23]. It will be shown below that the location and size of
some of these essentially depends on whether the relevant sixth-order terms in the free energy
expansion are accounted for.

2. Main results

Let us study the phase behaviour of the melt of a binary copolymer composed of
macromolecules in which the pattern of arrangement of monomeric units A and B is described
by a Markov chain. For the sake of simplicity the calculations will be restricted to an asymptotic
limit. This can be obtained when the length of a macromolecule as well as the number of
constituent blocks A and B tend to infinity, provided their average lengths are fixed. The
chemical structure of a Markovian copolymer is completely defined by the transition matrix.
Its element νi j has a meaning of the probability for the j th type unit to be found immediately
after a unit of type i = A, B for the conventional movement along a macromolecule. Due
to two normalization conditions of these probabilities, the chemical structure of a copolymer
is fully characterized by a couple of independent parameters. It is convenient to choose as
such parameters the fraction X A of units A (the fraction of units B equals X B = 1 − X A)
and the characteristic length of block la connected with the probabilities νAB and νB A by the
relationships

X A = νB A

νAB + νB A
, la = 1

νAB + νB A
. (1)

The Landau theory of phase transitions is based on the expansion of the free energy functional
in powers of the order parameter. A general algorithm of the calculation of these expansion
coefficients (i.e. vertex functions) in the case of polydisperse heteropolymer liquids was
formulated in [6]. This algorithm was thereafter used [24] to state the rules of a diagrammatic
technique that permits finding explicit expressions for the vertex functions. In the limit la � 1,
it is sufficient to retain in these expressions the terms which are proportional to the first
power of the small parameter 1/ la . The vertex functions thus obtained depend exclusively on
dimensionless variables yi = laa2q2

i /6 with a standing for the size of the monomeric unit. Of
concern to us here are the mesophases whose spatial period substantially exceeds the gyration
radius RG (R2

G = laa2/6) of the longer block. In this case all variables yi are much less than
unity. Expanding the vertex functions in their arguments yi and retaining only the principal
terms in this expansion we get in the momentum representation the following expression for
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the functional of the Landau free energy
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where M is the overall number of monomeric units in a system,while T denotes the temperature
in the energetic units. In expression (2), ψ̃ (q) has the sense of the dimensionless Fourier
transform of the order parameter

ψ (r) = �ρA (r) /M = −�ρB (r) /M. (3)

Here �ρα (r) = ρα (r)− ρ̄α stands for the deviation of local density ρα (r) at point r of type
α = A, B units from its average value ρ̄α, while δK (q) is the dimensionless Kronecker symbol.
Among all vertex functions entering in the expansion (2) only one, τ = 2la (χs − χ) � 1,
is temperature dependent. The reason for this is the dependence on temperature of the
Flory–Huggins parameter, χ , characterizing the intensity of the pair interaction between
different types of units. The free energy expansion (2) is valid only near the critical point,
(X A = X B = 1/2, χla = 1), where the coefficient λ in the cubic term vanishes. All
other dimensionless coefficients of this functional are governed exclusively by the copolymer
composition

χs = 1

4laξ
, c = 1

2ξ
, λ = 3

4ξ2
(X B − X A) , g = 3

8ξ3
(5 − 16ξ) ,

k = 1

2ξ2
, η = 3

4ξ3
, γ = 3

2ξ3
(3 − 8ξ) , where ξ = X A X B .

(4)

The first three items in expression (2) are identical to those constituting the traditional expansion
of the Landau free energy of low-molecular systems and monodisperse heteropolymers. The
remaining items, known as the non-local terms, owe their existence to the polydispersity
of a Markovian copolymer. The first of them is normally taken into consideration when
calculating the phase diagrams of such copolymers [9–13, 16–23]. This term is associated
with partitioning of the quadruple of vectors {qi}4 into two groups (replicas), (q1,q2) and
(q3,q4), each having vanishing momentum. Clearly, along with this term it is also necessary
to retain in the asymptotic limit yi → 0 the term proportional to γ , since the order of magnitude
of its contribution is just the same as that of the third term in expansion (2). The analysis shows
that although the last term in expansion (2) is of the sixth order, its contribution needs to be
accounted for as well. This term is associated with the partitioning of the sextuple of vectors
{qi }6 into two groups, (q1,q2,q3) and (q4,q5,q6). The contribution of other non-local terms
is negligible in the approximation at hand. This is because the expression (2) incorporates all
terms, which upon the minimization of the free energy with respect to the wavevector form the
complete set of the second-, third- and fourth-order terms of the amplitude expansion of the
Landau free energy. In all preceding works in which the Landau theory was used to calculate
the phase diagrams of polydisperse heteropolymers, this set was incomplete since it did not
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contain the last two terms in expansion (2). When treating the phase behaviour of a system,
for the sake of simplicity we will confine the consideration to three classical mesophases
with the spatial symmetry of lamellar (Lam), hexagonal (Hex) and body-centred cubic (BCC)
lattices [5]. In the framework of a one-harmonic approximation, when the Fourier transform
of the order parameter (3) is taken to be equal to the sum of n pairs of harmonics with identical
quantity qn, but with opposite directions of the wavevectors

ψ̃ (q) = An√
n

n∑

k=1

[
eiϕkδK (q − q(k)n ) + e−iϕk δK (q + q(k)n )

]
, (5)

where n = 1, 3 and 6 for Lam, Hex and BCC mesophases, respectively. All harmonics have
the same amplitude An, whereas their phases {ϕk} for all mesophases under consideration are
equal to zero. The amplitude expansion of the Landau free energy of every mesophase is
obtainable by substitution of the expression (5) into the expansion (2):

laFn
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Here the coefficients αn and βn are controlled exclusively by the symmetry of the mesophases
(α1 = 0, α3 = 4/

√
3, α6 = 8/

√
6 and β1 = 6, β3 = 10, β6 = 15). The expression for the

free energy of a two-phase state with the volume fractions φn = φ and φm = 1 − φ, occupied
by phases n and m, respectively, can be found in the same way as reported earlier [22, 23]. In
the case of the transition from a disordered phase with m = 0 into a mesophase with n �= 0,
substituting q0 = 0, A0 = 0, we will get
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The free energy of coexisting mesophases m �= 0 and n can be written as

Fmn (φ) = (1 − φ) Fm + φFn + φ (1 − φ)�Fnm (8)

where the following designation is used
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A specific feature of expression (8) is the absence of the additivity of the free energy with
respect to two coexisting phases. In the thermodynamics of low-molecular liquids, the
violation of such an additivity is known to be caused exclusively by the surface energy of the
interphase boundary. In expression (8) this contribution to the free energy is neglected, and the
presence of the last term characterizing its deviation from additivity is due to the polydispersity
inherent in a Markovian copolymer. Note that the volume free energy of a two-phase
monodisperse heteropolymer represents the sum of contributions of the coexisting phases.
The variables An, yn and φn , characterizing the nth phase, are obtained via minimization of
the corresponding free energies (6)–(8). This procedure results in the phase diagram shown in
figure 1(a). The phase diagram of this system found in [22, 23] is presented in figure 1(b). A
comparison of these figures demonstrates that the allowance for the sixth-order non-local terms
in expansion (2), leaving the sequence of the phase transitions between mesophases unaltered,
exerts a significant influence on the appearance of the phase diagram. Of central importance
here is the considerable expansion of the region of coexistence of the mesophases Hex and



Letter to the Editor L47

a b

1

2
3

4
5

6

1

2
3

4
5 6

Figure 1. Phase diagram of the melt of binary Markovian copolymers: (a) calculated in this work
and (b) reported earlier [22, 23]. Lines in figure separate homophase regions (coloured white) from
two-phase ones (coloured grey).

(This figure is in colour only in the electronic version)

Lam. Absolute values of the initial slope of curves 1–6 in figures 1(a) and (b) are presented in
the following table:

1 2 3 4 5 6

(a) 0 1.363 2.011 2.327 4.303 10.164
(b) 0 1.847 3.111 3.405 9.479 10.164

As evident from this table, the slopes of all curves (except for 1 and 6) in figures 1(a) and (b)
differ markedly. This distinction is the most strongly pronounced for curve 5.

Accounting for the last two terms in expression (2) for the Landau free energy enabled us
to reveal an important qualitative peculiarity of the two-phase state of the melt of polydisperse
heteropolymers. In the absence of these two terms the previous theory [22, 23] predicted the
equality of the periods of the coexisting mesophases, which is violated upon the inclusion of
the above-mentioned terms in the expression for the Landau free energy (2). Our calculations
showed that such a distinction in the periodicity scales is especially strongly pronounced in
the region of coexistence of hexagonal and lamellar mesophases.

3. Conclusion

The results outlined in this letter convincingly prove that when considering the phase behaviour
of polydisperse heteropolymers it is critically important to take into account the non-local terms
in the Landau free energy expansion in a more accurate manner than has been done before.
In particular we have shown that the addition of two such terms, ignored in all preceding
publications, is indispensable. This assertion stems from the inspection of the phase diagram
we managed to calculate for the melt of binary Markovian multiblock copolymers. It differs
markedly from the phase diagram constructed earlier without regard for these terms (see
figure 1). Key results obtained in this letter for Markovian heteropolymers can be verified for
other polydisperse multiblock copolymers, since formulae (6)–(9) hold at arbitrary values of
the parameters of the vertex functions in expansion (2). Obviously, its applicability suggests
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the fulfilment of inequalities τ � 1 and λ � 1, identical to those employed in the traditional
Landau theory of phase transitions [7, 8].

It is worth emphasizing that the central idea of this letter far exceeds the limits of the
construction of the phase diagram of heteropolymer liquids. This idea may well find application
when considering the thermodynamic behaviour of various systems with ‘quenched’ structural
disorder in terms of the Landau theory of phase transitions.

The authors gratefully acknowledge financial support of this work by CRDF (RC2-2398-MO-
02).
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